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Most optimization-based decision support systems are used re-
peatedly with only modest changes to input data from sce-
nario to scenario. Unfortunately, optimization (mathematical
programming) has a well-deserved reputation for amplifying
small input changes into drastically different solutions. A pre-
viously optimal solution, or a slight variation of one, may still
be nearly optimal in a new scenario and managerially prefera-
ble to a dramatically different solution that is mathematically
optimal. Mathematical programming models can be stated and
solved so that they exhibit varying degrees of persistence with
respect to previous values of variables, constraints, or even ex-
ogenous considerations. We use case studies to highlight how
modeling with persistence has improved managerial accep-
tance and describe how to incorporate persistence as an
intrinsic feature of any optimization model.

T^e reasonable man /^pt imizat ion-based decision support
adapts himself to the world; % #

V^^'systems, that is, decision support
the unreasonable one persists in trvine to adapt i u -u J Û
.. i J . u- If systems built around one or more mathe-
the world to himself; ^

matical programming models, are pre-
Therefore, all progress depends on the unrea- j • M I J •- n * j i
sonable man dominantly employed as follows; A model

is used to produce a plan, the plan is pub-
—Man and Superman, George Bernard Shaw
Copyright O 1997. Institule lor C^erations Research TKOGRAMMINti—UNEAR—APPLICATIONS
and the Management Sciences PROGRAMMING—INTTEGER—APPUCATIONS
t)092-2102/y7/2705/UOl 5S5.00
This paper was retereed,

INTERFACES 27: 5 September-October 1997 (pp. 15-37)



www.manaraa.com

BROWN, DELL, WOOD

lished, revised data become available and
are incorporated into the niodel, the re-
vised model with many or all of the origi-
nal decision variables and perhaps some
new variables is solved one or more times,
and a revised plan is published. This cycle
repeats in periodic or continuous review.
Confronted with revisions, managers fre-
quently object, "We have committed our-
selves to decisions based on prior model
advice; don't ask us to change our plans
ur\less we have some compelling reason to
do so." New plans that retain the features
of prior published plans are more accept-
able to decision makers than plans that re-
quire drastic changes. We have developed
methods for incorporating this kind of per-
sistence in modeling linear, mixed-integer,
and integer linear programs.

We also use the techniques of persis-
tence to incorporate managerial requests
and preferences that arise outside of the
cyclic-review process. Sometimes, a man-
ager has useful information about an opti-
mization scenario that cannot be easily
incorporated into a model,, yet this infor-
mation is critical for obtaining a usable so-
lution. For instance, forecasted severe
weather may affect the production of cer-
tain products at a plant next week, but the
plant's production-planning model does
not encompass weather. To handle this
problem, a manager could establish a set
of weather-feasible production targets for
the affected products, make a model run
that is persistent with respect to those tar-
gets, and thereby obtain a usable solution.

In our experience, lack of persistence is
one of the most common sources of com-
plaints about optimization. Some evidence
of our struggles with persistence can be

found in our publications on production
planning [Avery, Brown, Rosenkranz, and
Wood 1992; Brown, Geoffrion, and
Bradley 1981; and Brown, Graves, and
Honczarenko 1987], dispatching [Bausch,
Brown, and Ronen 1995; and Brown, Ellis,
Graves, and Ronen 1987], ship scheduling
[Brown, Dell, and Fanner 1996; Brown,
Goodman, and Wood 1990; and Brown,
Graves, and Ronen 1987], capital budget-
ing [Brown, Clemence, Teufert, and Wood
1991], and global supply chain manage-
ment [Amtzen, Brown, Harrison, and
Trafton 1995]. Over time, we have realized
that we need to state models like these dif-
ferently to formally incorporate persis-
tence. (We use persistent to mean "pertain-
ing to persistence.") In addition. In the
earliest design of a model we need to con-
sider the cyclic-review process in which
the model may be used, and we need to
design the models to be flexible enough to
handle unforeseeable managerial requests
or preferences. We must take into account
how the model will be used in the real
world.

The literature, for the most part, gives
short shrift: to the likely real-world use of
an optimization model. A refreshing ex-
ception is Schrage [1991, p. 129]:

Multiperiod models are usually used in a roll-
ing or sliding format. In this format the model
is solved at the beginning of each period. The
recommendations of the solution for the first
period are implemented. As one period elapses
and better data and forecasts become available
the model is slid forward one period.

Unfortunately, Schrage does not go on to
point out that a multiperiod model's ad-
vice might need to reflect the model's own
prior prescriptions. He leaves us with no
guidance about how to model and imple-
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ment persistence.
The lack of advice on persistence in the

literature probably derives from the
following:
—Many papers discuss only hypothetical,
pilot, or new applications, but problems
with persistence usually emerge after a
model is used for awhile. (In many of our
applications, we have not initially consid-
ered persistence, and only over time does
this oversight become a nuisance.)
—Modelers write most papers, and they
usually focus on how to obtain an optimal
solution efficiently, rather than how that
solution is going to be used. This focus
can bias the modeler to accept the disrup-
tive consequences of an optimal solution
because it is, after aU, an ophmal solution.
If managers wrote more papers, the focus
might change, since they normally prefer
usable solutions over mathematically opti-
mal ones.
—Everybody does it but nobody admits it.
Sooner or later, most modelers deal with
problems of persistence, and typically they
resolve the problems by simply fixing cer-
tain variables to their desired values. Few
modelers are proud of doing this.
We address these issues by
—Using a series of case studies that dem-
onstrate how persistence can mediate the
differences in focus between managers
and modelers; and
—Showing how to develop models from
the start with persistence in mind.
Scheduling Coast Guard Cutters

The First United States Coast Guard
District has used CutS (Cutter Scheduler)
to schedule cutters for three years [Brown,
Dell, and Farmer 1996]. The mixed-integer
linear program within CutS assigns 16 cut-

ters to weekly patrols, maintenance, and
training assignments over a calendar quar-
ter while minimizing total time in transit.
If changes occur after the Coast Guard has
promulgated a CutS schedule to the fleet,
it is critical that CutS incorporates persis-
tence in remodeling schedule revisions.

For instance, the summer 1994 sched-
ule—developed with CutS and approved
after slight modification by the scheduler
and cutter captains—planned on the cutter
Saiiibei being unavailable for three weeks
beginning in late July. This unavailability
turned out to be delayed by three weeks.
Presented with a modification of just one
cutter's availability, the nonpersistent ver-
sion of Cuts suggested 52 major changes,
where "major change" is defined as the
addition or deletion of a week's patrol as-
signment in some cutter's schedule. These
changes influenced 12 of the 13 weeks of
the quarter and affected the schedules of
11 of 16 cutters. This solution was mathe-
matically optimal and technically impie-
mentable but managerially impractical.

The need for a persistent solution in this
case is clear: We want to retain as much of
the already-published schedule as practi-
cal, and we don't want the cost of the
schedule to change significantly. In the
persistent version of CutS, we "encour-
age" binary assignment variables to take
on the values they had in the solution cor-
responding to the published schedule. We
do this by converting the original vari-
ables into elastic persistent variables. Each

such variable has a target value it is en-
couraged to obtain and a linear penalty for
any deviation from the target. The conver-
sion is particularly simple for binary vari-
ables because it is necessary to modify
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only the objective coefficients of the origi-
nal variables. To keep the cost of the re-
vised schedule close to the original cost,
we converted the original objective func-
tion into an aspiration constraint (a con-

straint on an "aspiration level," such as
mentioned by Mack [1971, pp. 197-200]).
Thus, the objective function of the persis-
tent modei is a surrogate objective that
just measures deviations from the original
schedule.

The original schedule for summer 1994
cost 570 transit hours, and we were able to
constrain the revision to cost no more (a
user-moderated inflation of the original
schedule cost can also be used). The surro-
gate cost of any assignment for the cutter
whose availability was changed (the Sani-
bel) is zero. For other cutters, the surrogate
cost of assignments in the revision that are
identical to those in the original schedule

is zero, exchanging patrols with nonpa-
trols costs 10, and exchanging mainte-
nance and training assignments costs one.
For the summer 1994 revision, "Persistent
CutS" prescribed only 11 major changes,
five of which were for the Sanibet (Figure

1).
Revisions such as this are not only more

managerially acceptable, they are typically
much easier to solve than the correspond-
ing original schedules. Here, the revision
is about three times faster to solve than
the original.
Base Realignment and Closure Action
Scheduler

BRACAS [Dell 1997] is a mixed-integer
linear program developed for the US
Army to guide it in closing and realigning
military installations. Realigning an instal-
lation (a military base, for example) means
assigrung different units to it. BRACAS
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Figure 1: The First Coast Guard District revised its approved, published, summer 1994 schedule
to accommodate a three-week delay in a three-week unavailability of the cutter Sanibcl. In an
optimal solution, CutS responded with the major changes (patrol reassignments) shown at the
left on a Gantt chart with rows representing cutters, columns representing schedule weeks, and
the J indicating addition or deletion of a patrol week (a major change) in the revised schedule.
Persistent CutS reduced major changes to those shown at the right with ^'s.
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maximizes the expected net present value
of savings the army accrues by scheduling
expenditures for closure and realignment
in each of six planning years. It does this
while satisfying a number of constraints
governing the way and the rate at which
the army must spend money.

ln 1995, after a long planning process
and many reviews, the Congress approved
the army's plan to close 28 installations
and realign 13 others to save, eventually,
$450 million per year. This approval in-
cluded a base realignment and closure
(BRAC) budget totaling about a billion
dollars over six years. The budget was
based on cost estimates the army had
made without extensive field studies and
without using BRACAS.

Next, the army obtained better cost esti-
mates and used them to propose an
installation-by-installation budget for each
of the six planning years. These proposed
budgets covered BRAC expenditures and
another billion dollars in separately au-
thorized environmental cleanup costs. Us-
ing the original (nonpersistent) BRACAS,
the army discovered that, among other
things, reallocating $100 million to an ear-
lier phase of the BRAC process would in-
crease savings by $233 million. In late
1995, Congress approved this acceleration,
and the army published the year-by-year,
category-by-category BRAC and
environmental-cleanup budgets.

In February 1996, the army received,
from each target installation, revised esti-
mates of annual BRAC and environmental
costs. Compilation of the total annual costs
derived from these estimates showed
budget overruns in early years (Figure 2).
Clearly, the yearly budgets had to be re-

vised to be consistent with the amounts
approved by Congress.

The yearly BRAC budgets break into
four primary categories: construction, en-
vironmental cleanup, operating and main-
tenance, and "other." The army could real-
locate BRAC funds among categories
within years but not between years. Un-
fortunately, in these BRAC cost estimates,
the target installations provided little
guidance about how they might reallocate
funds. BRACAS, with enhancements to en-
courage persistence, provided a model to
reallocate yearly BRAC budgets across
categories and installations. Priorities
based on estimated savings guided the
reallocation, while constraints ensured that
spending stayed within yearly budget
totals.

Within the persistent BRACAS, a ranged
persistent constraint provides upper and
lower limits (ranges) for each target
budget category by installation. The
installations' planned costs for environ-
mental cleanup covered initial studies and
essential preliminary tasks that could not
be delayed. We fixed expenditures for
these categories, that is, we set upper and
lower ranges in the associated persistent
budget constraints equal to established
values. Construction plans are difficult
to change, so if an installation had re-
quested more than a million dollars,
BRACAS ranged the reallocation within 10
percent of plan. Operating and mainte-
nance and "other" BRAC costs are some-
what more flexible. We allowed yearly op-
erating and maintenance requests above
$2 million to range from an 80 percent de-
crease to a 150 percent increase. We al-
lowed requests below $2 million to be in-
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Figure 2; In late 1995, the army published an approved six-year plan for spending about $2 bil-
lion to close and realign military installations (left-hand bars). Soon after, the target installa-
tions submitted detailed individual schedule revisions that agree with the published plan in
total amount, but not in timing (right-hand bars). The army used persistent BRACAS to res-
chedule the target installations revisions to comply with the plans Congress had approved.

creased to 35 percent of the total six-year
operating and maintenance amount re-
quested by the installation. We set the
range for "other" requests above $2 mil-
lion between - 90 and +150 percent and
permitted requests for lower amounts to
increase to 35 percent of total. Persistent
BRACAS also constraints budget totals in
each year to Congressionally approved
levels, exactly.

The army is following the persistent
BRACAS advice.
Strategic Analysis of Integrated Logistics
Systems

SAILS is an integrated decision support
system for building, modifying, solving,
maintaining, and interpreting large-scale
strategic multicommodity logistics net-
work design models [INSIGHT 19941.
SAILS has been used for more than 20

years by scores of companies, including
about half of the Fortune 50, their consul-
tants, and a number of university logistics
programs. Geoffrion and Powers [1995] re-
view its remarkably long history.

The databases and models that underlie
SAILS are typically large {for example,
hundreds of millions of freight rates and
millions of model variables), but a modest
number of entities are important to man-
agers: These govern the go/no-go struc-
tural decisions (Figure 3). SAILS has been
so successful largely because of its persis-
tent features. Managers can use these fea-
tures to ensure that a new network design
does not depart very much from an old
design and that it is based on their
guidance.

SAILS' graphical user interface cloaks
huge amounts of detail and offers the user
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Figure 3: A typical SAILS logistics network is best illustrated in terms of physical system enti-
ties (figure adapted from Geoffrion and Powers 11995]). An optimal design can be principally
expressed by distinguishing which of these entities are to be open and which closed. Hidden
are millions of underlying details from sole sourcing to product recipes—details that are essen-
tial but not likely to be the principal focus of decision makers.

intuitive ways to influence network-design
decisions. One can fix model variables to
open or close suppliers, plants, equipment,
packing lines, conversion recipes, distribu-
tion centers, product bundles, sole sourc-
ing, and so forth. Fixing variables is the
simplest and strongest way to insure
persistence. Customer demands for prod-
ucts can be scaled, eliminated, patterned
after guide forecasts, and aggregated via a
host of georeferents. One can restrict
commodity flows to automatically follow
the patterns, but not necessarily the
amounts, of some prior solution. Elastic
persistetit (ranged) constraints govem
throughput limits: These are constraints
that one can violate at some linear penalty
cost per unit violation above or below the
target ranges. (Elastic persistent (equality)
constraints are a special case of the ranged

variety.)
Managers can guide SAILS by fixing

certain decisions and in other ways. For
instance, for any set of candidate
open/close decisions, one can specify the
minimum and maximum number of
"opens," that is, limits on the set cardinal-
ity of the open/close decisions. Using
these two features, managers can put into
effect such statements as: "I don't know
where we'll relocate all of the distribution
centers, but we'll be in Columbus, Atlanta,
and Denver, and we'll operate no more
than 20 locations."

SAILS invites no-fault recommendation
of a solution from past experience. One
can dredge up this advice from detailed
records of a past design, and perhaps sub-
ject it to some qualitative editing via inter-
face push buttons. Or the advice may be
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less detailed and expressed in such mana-
gerial terms as "the Reno plant will likely
still stay open; try it" or "likely not." One
can give preference to any decision, but it
is not required. The interface sorts out
what this advice means to successive or
competing models, which do not necessar-
ily share any common constraints or vari-
ables but presumably have a "Reno
plant."

SAILS always follows this advice first in
a persistent preemptive enumeration, which is

a modification of standard branch-and-
bound enumeration that incorporates and
exploits persistence. Because of its elastic
features, SAILS guarantees completion of
at least one global design that follows all
the advice provided to the letter. Then,
armed with this initial incumbent solution,
the advice that suggested it, and limits on
what digressions are permitted, SAILS
continues to make system improvements
in a customary enumeration.

Although the initial guidance alone may
not produce an incumbent solution with
acceptable quality, the suggestions and the
bounds that they contribute can accelerate
subsequent enumeration. In fact, good ad-
vice can speed up SAILS by an order of
magnitude or more. It's also comforting to
know that whatever SAILS finally
suggests, it has given management guid-
ance primary consideration.
Hamming Distance and Submarines

The sum of the absolute values of the
bit-by-bit differences between two binary
vectors is called the Hamming distance be-
tween them [Hamming 1986, p. 45]. Sup-
pose each binary variable in a set repre-
sents the decision to set up production on
a machine next month or deploy a ship

next week or change customer sourcing
next year or move a berthed submarine to-
morrow [Brown, Cormican, Lawphong-
panich, and Widdis 1977] (Figure 4). The
Hamming distance between a published
binary plan and a successive revision pro-
vides a simple but useful gauge of the tur-
bulence or lack of persistence between the
two proposals.

We use ranged persistent constraints to
limit the Hamn^ing distance between suc-
cessive solutions and call these constraints
Hamming cuts. Alternately, we sometimes
penalize turbulence by placing the Ham-
ming distance in the objective as a Ham-
ming penalty. We implement this penalty
by using an elastic persistent constraint
whose goal is to avoid any change be-
tween solutions. Both Hamming cuts and
Hamming penalties use a simple linear
functional: The coefficient of each binary
variable is 1 if its prior published value is
0, and it is — 1 otherwise.
Kellogg Planning System

The Kellogg Planning System (KPS) is
an unpublished model that relies on a
large linear program to determine the pro-
duction and distribution of cereals and
convenience foods at a weekly level of de-
tail. KPS models processing facilities pro-
ducing base products, packaging lines
converting base products into finished
stock keeping units (skus), and shipments
among and inventory within processing
locations and distribution centers (DCs).
The object is to meet demand at minimum
cost.

KPS encompasses about a hundred base
products, several hundred skus, about a
dozen producing locations and about a
dozen DCs. This is a big, highly detailed

INTERFACES 27:5 22



www.manaraa.com

PERSISTENCE

us Naval Base
Pt. Loma. CA

Middle Pier

N

W-

Soufh Pier

Figure 4; A plan for submarines berthed at US
Naval Base, Pt. Loma, California shows seven
SSN637 Sturgeon and five SSN688 Los Ange-
les class submarines situated to receive shore
services on a given day. Each submarine
needs different shore services day by day, and
each berth position, including a tender ship
that can act as a berth when moored as
shown, has differing abilities to render such
services. The navy minimizes berth shifts:
Moving multibillion dollar submarines is
time consuming and interrupts services. How-
ever, new port arrivals, departures, and daily
service schedules make some berth shifts un-
avoidable. An optimization-based planner has
needed some guidance to minimize berth
shifts that only superficially improve service
benefits. The berth-planning model expresses
the location of each submarine on any given
day as a binary decision variable and limits
undesired berth shifts between days by penal-
izing the Hamming distance between existing
or planned positions and suggested shifts of
these positions.

model even though it does not explicitly
deal with raw materials. Planners solve a
20-week tactical "production model" every
Sunday morning, with planning week one
beginning the next day. There is also a
strategic what-if version of KPS, with
monthly detail, that they use to evaluate
potential major changes in production ca-
pacity, inventory policy, and so forth.

KPS is persistent in several ways.

On the rolling weekly horizon, raw ma-
terials and packaging materials required
for week one will already be arranged, so
KPS cannot change week-one production
or packaging decisions. Also, "pending
stock orders" restrict week-one shipping
decisions. So, persistent variables freeze
(fix) most production and distribution de-
cisions in week one.

Lead times for son:ie materials exceed
one week, so in some cases the system im-
poses a partial freeze of the packaging
schedule in weeks two and beyond. It also
uses a partial freeze of other activities to
incorporate management knowledge or
even hunches about future conditions that
a model cannot guess. For instance, it can
reserve scarce production capabilities for
key products in critical weeks by with-
holding them from products with other
alternatives.

Strategic KPS employs an 18-month ho-
rizon to evaluate such issues as locating
new production facilities or realigning ex-
isting capacity. Forecasting demand 18
months ahead is not easy, especially when
sales promotions create spikes of highly
uncertain size. KPS responds optimally, in
a mathematical sense, to estimated de-
mand spikes and will even anticipate
those far in the future by adjusting deci-
sions in early months. Because of this,
managers initially found KPS too "ner-
vous." In particular, from run to run, KPS
prescribed significant changes in produc-
tion across time, locations, and products
when planners changed far-term demand
estimates for only a few products.

"Nervousness" is just a lack of persis-
tence caused, in this case, by KPS's "omni-
science." This omniscience is mitigated, in
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practice, by employing a problem cascade
(for example. Brown, Graves, and Ronen
[1987] or the "subhorizons" suggested by
Chames and Cooper [1961, p. 370]). In
particular, the strategic version of KPS
uses a sliding window of five months, first
optimizing months one through five, then
fixing month-one variables and optimizing
months two through six, then fixing
month-two variables, and so forth. Unlike
most cascade schemes, this one never
solves the entire (18-month) problem.

New plans that retain the
features of prior published
plans are more acceptable....

Making KPS myopic has several advan-
tages. Managers like the results: KPS
doesn't anticipate spikes and rearrange
production plans too early. Myopia also
eliminates the need to explicitly model the
shelf life of perishable inventories because
KPS doesn't produce to inventory until it
sees demand, and five months is a reason-
able shelf life. The myopic model is also
much smaller and faster to solve.
Helicopter Fleet Planning

The PHOENIX optimization model
helped the US Army to prevail over
budget critics and modernize its aging
post-Vietnam helicopter fleet [Brown,
Clemence, Teufert, and Wood 1991]. The
army has used PHOENIX and its progeny
to plan modernization of helicopters as
well as a variety of other equipment fleets.
The successes of PHOENIX, reinforced by
intense scrutiny during defense budget de-
bates, have also given other authors the
confidence to apply optimization to other
military-proctirement and equipment-

management problems. Illustrative exam-
ples are presented by Dundas [1996],
Faircloth [1989], and Staniec [1996].
PHOENIX-Iike models are now influenc-
ing planned expenditures of many billions
of dollars, and persistence is an important
feature of most.

PHOENIX-like models are all multiper-
iod models that address long-term equip-
ment replacement issues, including opti-
mal timing of major maintenance, refit,
retirement, and most important, new pro-
curement. Military procurement is distin-
guished by high fixed setup costs: Re-
search, development, testing, and
evaluation costs are large, and production
costs are amplified by first-time applica-
tion of high technology, security, and lim-
ited production quantities. Alternate can-
didate production and renovation rtins are
arranged as campaigns, each with a start
date, duration, and level of effort. This
partitions production methods to isolate
cost-estimation, economies-of-scale, and
learning-curve effects. Military equipment
also must be fielded in compatible units of
inter-operating equipment types. This au-
gurs well for optimization.

PHOENIX uses many elastic persistent
constraints and variables to encourage de-
sired spending levels, average fleet age,
average "technological advantage" of the
fleet, and so forth. (The persistent features
we discuss have all been used in PHOE-
NIX, but not all of these appear in the sim-
plified published model.) Discount rates re-
duce persistent penalties in each period,
typically a year, to net present value or
even lower, reflecting the army's uncer-
tainty about the future and a reasonable
desire to delay violations as long as possi-
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ble. PHOENIX'S time horizon covers many
years, so this is important. Of course, net
present value is not a precise concept
when dealing with nonmonetary units,
such as technological advantage, but all
elastic penalties are usually adjusted by
the same discount rate, the rate used for
money.

PHOENIX keeps track of individual hel-
icopter age and not only limits it, but also
uses an elastic persistent constraint by
year on the average age of the entire heli-
copter fleet: "Try to keep the average op-
erational helicopter no older than T
years." This is an example of a weighted
average elastic persistent constraint the
system uses to smooth or moderate fluctu-
ations in plans to conform with some
overall expectation.

Some of PHOENIX'S persistent con-
structs are elastic cumulant persistent con-
straints with cumulant target values or
ranges. These constraints represent our de-
sire for a sum of events to meet a sum of
subtargets since some base event. For in-
stance, consider a persistent model using
yearly retirement variables and targets for
retirements. Now, the sum of yearly tar-
gets from the beginning of the plaruiing
horizon to the end of each year t does im-
ply a set of cumulant targets. However,
such a model would allow more-or-less in-
dependent deviations from its yearly tar-
gets. Thus, it might miss the implied cu-
mulant targets by significant amounts,
especially toward the end of its time hori-
zon. In contrast, PHOENIX with explicit
cumulant constraints compares cumulative
retirements in each year to targets repre-
senting total desired retirements from the
start of the planning horizon. So, PHOE-

NIX pays penalties in each year for the to-
tal deviation since the beginning of the
planning horizon and is motivated to keep
cumulative retirements on track in every
year. (Leachman, Benson, Liu, and Raar
[1996] describe another example of cumu-
lant targets.)

An alternative to writing cumulant con-
straints with yearly variables is to rewrite
the model in terms of elastic cumulant per-
sistent variables. For example, the cumulant
formulation described above could be re-
written to use elastic persistent variables
representing cumulative retirements, each
with a cumulant target. Any constraint
needing retirements in a single year could
be written in terms of the difference be-
tween cumulant variables in that and its
predecessor year.
Persistent Partitioning

A variety of important business, engi-
neering, and scientific applications employ
set-partitioning models. Anbil, Gelman,
Patty, and Tanga [1991]; Eben-Chaime,
Tovey, and Ammons [1996]; and Thuve
[1981] provide illustrative examples. These
models have a deceptively simple appear-
ance but offer powerful modeling capabili-
ties. Although set-partitioning models can
be solved with custon:iary linear integer-
programming methods, they are not easy
to solve reliably, and they have only be-
come more fashionable as the trustworthi-
ness of solution methods has improved.
Predictably, real-world experience reveals
issues of persistence, in particular, with re-
spect to incorporating guidance from the
user.

As an illustration, suppose there are
several hundred packages on a loading
dock, each ready to be shipped to its own
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destination. A fleet of identical trucks is
available, each of which can deliver a
truckload of packages to their destinations
in some order using a route that cannot
exceed some maximum driving distance
or time. The problem is: How should the
packages be consolidated into a minimum
number of feasible truckloads?

In a set-partitioning model for this, we
define a constraint for each package to
make sure it gets delivered exactly once.
We define a binary variable for each candi-
date truckload, with a unit coefficient in
each constraint for a package in that truck-
load. All we need do is select the minimum
number of binary variables, that is, col-
umns, so that each constraint has exactly
one unit coefficient selected (Eigure 5).

Of course, the real world is more com-
plicated. Eor example, Bausch, Brown, and
Ronen [1995] describe a freight consolida-
tion case that has a number of necessary
embellishments. Trucks are not identical,
and the cost of a delivery route is a com-
plicated function of which packages a
truck carries and when and where it must
deliver them. Most of these details are ex-
trinsic. That is, they govem the generation
of cost coefficients and the locations of
unit colunm coefficients for variables but
otherwise do not appear explicitly in the
model. This is a blessing and a curse.

The number of binary variables (in this
example, the number of subsets of pack-
ages forming candidate truckloads) can be
enormous. Often a key to success is a sam-
pling mechanism that can generate from
this huge population a restricted subset of
columns from which a good partition can
be found (for example, a good set of
routes delivering all the packages). Barring

binary variable

a b c d e f g h I j k t m n ...

1
1
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1
1
1
1

1
1

1
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1
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1
1

1
1
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1
1

1
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1

1
1

1

1 1
1

1 1

1
1

1

1
1
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- 1
- 1
= 1
= 1
- 1
= 1
= 1
- 1

Figure 5: A set-partition puzzle: Select a set of
columns in this matrix so that there is exactly
one selected unit element in each row. (Mini-
mizing the number of such columns is no eas-
ier.) An illustrative application views each
row as the requirement to deliver a package
and each column as an alternate delivery
route. (We give a hint in the text and later a
solution.)

exceptionally good fortune, restricted par-
tition solutions will exhibit some flaws,
such as ridiculously high cost or outright
infeasibility (for example, packages not de-
livered). At this point, the restricted parti-
tion needs help.

One approach to improving the solution
is to retum to the column generator with
"intemal," model-provided advice about
what kind of columns (routes) are needed
and to generate such columns. (Graves,
McBride, Gershkoff, Anderson, and
Mahidhara [1993] use this device in sched-
uling airline crews.)

Another approach accepts external guid-
ance from an experienced user, who can
review a tentative solution and decide
when it's reasonable to change the prob-
lem by simply delaying a delivery, mak-
ing a special delivery, hiring an outside
delivery service, and so forth. A phone
call relaxing a bottleneck beats a clever al-
gorithm every time.
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But, if an experienced user contributes
time and advice to deal with a flaw and
then reoptimizes, it's not a good idea to
capriciously create new flaws. So, reoptimi-
zation with human assistance makes per-
sistent techniques essential.

When reoptimizing, the user should be
able to suggest that the previous partial
solution be incorporated where it appears
to be sound. One way to do this is by sim-
ply fixing variables. Fixing variables iso-
lates the parts of the solution that look
good, and fixing a variable to 1 can break
up a set-partitioning problem into smaller,
more easily solved pieces. (For instance,
you will find it easier to solve the puzzle
in Figure 5 if you follow the hint that col-
umn h is part of a partition.) However, we
prefer to employ elastic persistent vari-
ables or constraints for this problem so
that if the model does not select user-
preferred routes, a penalty is inflicted.
(Brown, Goodman, and Wood [1990] add
elastic persistent constraints to their gener-
alized set-partitioning model for annual
scheduling of the US Atlantic Fleet.) Since
the set-partitioning problem is a binary in-
teger program, penalizing nonuse of pre-
ferred columns is much like using a
Hamming penalty as part of the objective.
Persistence Is Not New

Persistence is not new, but the literature
is scant. Researchers addressed the basic
issue of persistence as early as the 1950s
and have published recent research on is-
sues of implementation.

Charnes, Cooper, and Ferguson 11955]
describe a linear-programming model to
determine a consistent linear formula for
executive compensation. (Chames and
Cooper [1961, Chapter 10] later restate this

case.) The model selects weights for
employee-compensation factors so that the
resulting formula for executive salaries
meets company-specified criteria "as
closely as possible." Examples of these cri-
teria are (1) higher-ranked employees
should be paid more than lower-ranked
employees and (2) salaries should be com-
petitive on an industry-wide basis. The
model employs both ranged and elastic
persistent constraints.

Chames and Cooper [1961, p. 215] start
and end their discussion of goal program-
ming with advice about persistence. They
seek solutions such that "long-run consid-
erations are not obliterated by immedi-
ately attainable objectives" and conclude:

For example, constraints might be entered to
demarcate regions which are "good enough,"
and the objective restated to ensure that pro-
grams are either (a) good enough or (b) close to
good enough, etc.

Ranged persistent constraints can be used
to implement "good enough" and ranged
elastic persistent constraints can be used to
implement "close to good enough."

Bowman [1963] demonstrates that one
can incorporate management's past deci-
sions to produce effective present deci-
sions using a linear decision rule. A refer-
ee's comment quoted in that paper states
"That managerial decisions might be im-
proved more by making them more con-
sistent from one time to another than by
approaches purporting to give 'optimal'
solutions to explicit cost models . . . espe-
cially for problems where intangibles (run-
out costs, delay penalties) must otherwise
be estimated or assumed." Our enthusi-
asm for this view is guarded. An unfortu-
nate thrust of this comment. Bowman's
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work, and extensions of his work [Hurst
and McNamara 1967; Jones 1967;
Kunreuther 1969; and Bowman 1984] is to
emphasize subjective considerations and
de-emphasize or ignore objective optimi-
zation altogether. Persistence can synergis-
tically combine subjectivity and
objectivity.

A number of authors have suggested
constraints to incorporate subjective con-
siderations into mathematical models.
Huysmans [1970] suggests adding "human
constraints" to operations research mod-
els. Trull [1966] recounts the advice of or-
ganization theorists March and Simon
[1958]: Once an initial decision is reached,
it establishes decision rules or procedures
that constrain future decisions. Little
[1970, p. B-483] states that subjective judg-
ments must be incorporated into models
used by managers because people have a
way of making better decisions than their
data seem to warrant. He concludes:

The model is meant to be a vehicle through
which a manager can express his views about
the operations under his control. Although the
results of using the model may sometimes be
personal to the manager because of judgmental
inputs, the researcher still has the responsibili-
ties of a scientist in that he should offer the
manager the best information he can for mak-
ing the model conform to reality in structure,
parameterization, and behavior.

All of the subjective considerations we
discuss above can be implemented using
persistent constraints.

Urban [1974] surveys over 150 articles
from the "Application" section of Manage-
ment Science and concludes that manage-
ment scientists are not building good
models from the decision maker's point of
view. He reminds us that a manager's

most cherished prerogative is to make de-
cisions, and we must take special care to
show that the model will supplement and
not replace the manager in his or her deci-
sion making. For a model in continuous
use. Urban also discusses the need to refit
any new data and update any assump-
tions. These requirements are the goal and
guide of persistence.

Lewandowski and Wierzbicki [1989] ed-
ited a series of papers that describe deci-
sion support systems based on "reference-
point optimizahon" and applications of
these systems in Poland. Reference-point
optimization incorporates managerial re-
quests and preferences within the decision
support systems—one of the goals of per-
sistence. The systems interactively form
multiple objectives based on user-supplied
reference points or aspiration constraints.
Their description of aspiration constraints
is so generic that we interpret them to in-
clude both persistent variables and con-
straints. However, none of the edited pa-
pers highlight the benefit or necessity of
persistence, and none illustrate how per-
sistence might be useful in successive
model revisions.

Mulvey [1993] diagnoses trouble with
optimization models that rely on noisy in-
put data and prescribes a technique he
calls robust optimization. Robust optimi-
zation (see also Mulvey, Vanderbei, and
Zenios [1995]) seeks a solution that, over
many potential altemate input scenarios,
is close to optimal (solution robust) and al-
most feasible (model robust). Prom our
perspective of persistence, robust optimi-
zation seeks a baseline solution that will
persist as best possible with a number of
altemate forecast revisions. This is a laud-
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able goal but fraught with challenges. We
agree with Mulvey: How do you forecast
future revisions before you solve the
model? By contrast, persistent modeling
uses experience as a guide and invites
guidance for dealing with change, rather
than depending upon precise predictions.

We must take into account
how the model will be used.

General nonlinear-programming meth-
ods and (linear and nonlinear) decomposi-
tion methods solve models indirectly by it-
eratively making local estimates of
directions of improvement and taking
steps in those estimated directions. It is
wise to be cautious about step length be-
cause the neighborhood over which you
can trust each local approximation is usu-
ally limited by ignorance of the global
properties of the problem, and the conse-
quences of prediction error can be serious.

Accordingly, nonlinear-programming al-
gorithms are customarily governed by
trust regions for variable values over which
the local approximations are assumed to
have sufficient validity (for example, see
Fletcher [1981, p. 207]). Some decomposi-
tion algorithms also use trust regions.
There are both theoretical and heuristic ar-
guments that such moderation is a virtue,
and real-world computational experience
is convincing [Brown, Graves, and
Honczarenko 1987; More 1983].

Even simple linear programs need trust
regions because absolute linearity just
doesn't hold in the real world. Unless we
apply common sense (and perhaps Tay-
lor's approximation) and limit the region
over which we can expect linearity (and

perhaps Taylor's second- and higher-order
remainder terms to remain insignificant),
we invite trouble. Ranged persistent vari-
ables are variables bounded within de-
sired ranges; the corresponding bounds
constitute a hyper-rectangular trust region
for primal variables. We have not pre-
sented a case study with this ubiquitous
persistent feature, but we always use it.

We have also suggested the use of per-
sistent elastic constraints: The associated
elastic penalties constitute a trust region for
dual variables. The proximal terms used in
some nonlinear programming algorithms
[Kiewel 1985; Mifflin 1977] and in some
decomposition algorithms [Ruszczynski
1986, 1993] are similar persistent controls.

We can interpret linear regression mod-
els in the light of persistence: Given a set
of observations or targets, a corresponding
set of independent variables, and a speci-
fied metric, find a parametric function of
the independent variables that tracks as
closely as possible with the targets. In
other words, find a parametric function of
the independent variables that is persis-
tent with respect to the desired values, the
targets. Given this interpretation, we can
compare the advantages and disadvan-
tages of two standard regression models.

The least-squares (L2) model is the re-
gression model that people habitually
adopt as much for its ease of computation
as for the wealth of elegant statistical re-
sults deriving from the usual assumptions
of homoskedastic normality of observation
errors [Draper and Smith 1966]. By con-
trast, an absolute-value (LI) regression re-
quires one to solve a linear program [Bar-
rodale and Roberts 1973], deal with
nonunique solutions, and interpret the sig-
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nificance of results without as much statis-
tical support. An LI regression is not
without advantages, however.

LI regression models are essentially
elastic persistent-constraint linear pro-
grams. These LPs determine model pa-
rameter values that minimize the average
absolute deviation between observed re-
sponse values and forecasts of these. There
are textbook examples [Schrage 1991, p.
255]. In an LI regression, it is easy to add
side constraints on estimated model pa-
rameters, recourse for missing data, (elas-
tic) limits on maximum estimation error
for any observation, and any number of
linear embellishments. The resulting
model is still a linear program, and our
experience shows that a constrained LI re-
gression is seldom much harder to solve
than its unconstrained cotmterpart. On the
other hand, a standard L2 regression prob-
lem is an easy-to-solve unconstrained
quadratic program, but adding linear con-
straints changes it into a constrained
quadratic program that is more diffictjlt to
solve.
Persistence Has Its Costs

Persistent modeling requires little addi-
tional data, but you must prepare this
data carefully. An elastic persistent vari-
able needs a target value and normegative
penalties for deviations above or below
this target. This can be generalized to al-
low different per-unit penalties in differ-
ent ranges, but in practice a single target
and simple linear deviation penalties usu-
ally suffice and do not require additional
constraints. The persistent-variable penal-
ties can constitute a distinct objective or be
weighed with other objectives.

A ranged persistent constraint requires

a target range governing its value. Ranged
elastic persistent constraints also need per-
unit linear penalties for violations above
and below the target range. Such con-
straints can also be generalized to allow
different per-unit penalties in different
ranges, but we find that linear penalties
with a single range usually suffice.

The challenge is to express persistent
features, especially penalties, to create an
insightful, unified model.
Conclusions

Optimization models respond unpre-
dictably to seemingly inconsequential
changes in input. This is especially trou-
blesome when an optimized plan has been
adopted and inevitable small changes in
data necessitate a revision. The model user
desires a revised plan that is "not too dif-
ferent" from the old, but reoptimization
may prescribe massive revisions com-
pletely out of proportion to the changes in
inputs. At best, this is annoying. At worst,
good models lose credibility with their
users.

Our prescription for this problem is per-
sistence horn the root persist:

1. to continue steadily or firmly in some state,
purpose, course of action, or the like, esp. in
spite of opposition, remonstrance, etc.: to per-
sist in a belief; to persist in one's folly. [Web-
ster's 1989]

By making a model persistent, a new solu-
tion may be obtained that is not too differ-
ent from the previous solution yet is
nearly optimal with respect to standard
criteria. The persistent techniques that we
use are summarized below.
—A subset of a model's variables may be
fixed or frozen to their preferred values.
{Preferred means "previous" or "desired"
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depending on how persistence is inter-
preted in a given model.) A hyper-
rectangular trust region for the model
variables, centered around a preferred so-
lution, implements another simple form of
persistence.
—Some variables can be converted into
elastic persistent variables that incur linear
penalties for deviating from their pre-
ferred values. When binary variables all
incur the same penalty for changing from
their preferred values, the total penalty
measures the Hamming distance between
the preferred and new solutions.
—Ranged persistent constraints ensure
that certain aggregate quantities do not
deviate too far from preferred values.
These quantities may or may not be part
of an originating nonpersistent model.
Ranged persistent constraints with binary
variables can limit the Hamming distance
of a new solution from a preferred solu-
tion; we call such constraints "Hamming
cuts."

—Ranged persistent constraints can be too
strict. To allow a persistent model more
flexibility, we employ elastic persistent
constraints that may or may not be
ranged. Such constraints encourage aggre-
gate quantities to achieve preferred values
or ranges of values, but allow penalized
deviations to occur, too. A discount factor
is often applied to penalties on such con-
straints (or variables) when they are in-
dexed by time or proximity.
—Sometimes we convert an original objec-
tive function into an aspiration constraint
in a persistent model. This is just a persis-
tent constraint, elastic or ranged, that en-
courages or forces a new solution not to
deviate too far in cost from a preferred so-

lution's cost.
^Por the purpose of introducing subjec-
tive judgments into a model, we some-
times limit the number of binary variables
that can be set to one or zero using set car-
dinality constraints.
—Rather than penalizing or restricting de-
viations of variables or constraints from
previous values, it may be desirable to pe-
nalize or restrict deviations that accumu-
late over time. Por instance, we may not
want to retire exactly 10 aircraft in each
year t in a model, but we might like to see
that about lOt aircraft are retired on aver-
age year-by-year through year t in the
model. In such a case, the persistent con-
structs described above may be applied to
cumulant variables or cumulant con-
straints. When elastic penalties are used
with a sequence of cumulant variables or
constraints, they imply penalties on a
weighted average of their noncumulant
counterparts. Weighted average con-
straints can also directly govern linear
combinations of arbitrary performance
measures.

There are also two rather different tech-
niques that we use to achieve persistent
behavior in certain models:
—By solving a time-indexed model with a
problem cascade, that is, by sequentially
solvuig such a model over a subset of the
model's time periods (say, 1 through t, 2
through t+h...,T-t-\-1 through T),
we induce a f-period myopia in the model
that reduces "nervousness" of solutions to
minor changes in data.
—A persistent preemptive enumeration
can be used to solve mixed-integer pro-
grams by branch and bound: The solver
investigates preferred solutions before
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widening its focus and considering less
(subjectively) desirable solutions.

Textbooks, even those with case studies,
don't offer much advice about persistence
in optimization models. Thus, we have
presented a collection of case studies that
motivates the need for persistence in such
models and shows how to incorporate it.
These case studies reflect a long, slow
awakening on our part that persistence
should be a model enhancement, rather
than a crippling oversight. A persistent so-
lution is a more usable solution and, de-
spite the need to solve a larger model, of-
ten takes less time to compute than its
nonpersistent counterpart.

Persistence is usually added to an opti-
mization model too late, after it misbe-
haves, and almost all optimization models
eventually do misbehave. After the fact,
repairing the model and regaining the
faith of sponsors can be complicated. It is
better to plan for persistence from the out-
set. To this end, we have provided new
vocabulary and new mathematical nota-
tion that should help simplify describing
and exploring the issues of persistence in
optimization models. This vocabulary is
defined as used in the body of the paper
and is summarized above; the mathemati-
cal notation is defined as part of a helicop-
ter fleet-modemization model described in
the appendix.

(In Figure 5, columns c, e, h, and / form
a partition.)
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APPENDIX: A PERSISTENT
FORMULATION, PHOENIX REDUX

A simplified PHOFNIX-like prototype
(Figure 6) demonstrates persistence in an
initial model formulation. This example
does not incorporate all the persistent fea-
tures we have identified, but it is a good
example of how persistence can be ex-
pressed concisely to yield an easily under-
stood formulation. Our persistent formula-
tion extends the NPS (Naval Postgraduate
School) standard format, a format we en-
force on ourselves, our clients, and our
students. (Similar formulation formats ap-
pear in the literature.) NPS format follows
a define-before-use subdivision of model
entities, including indices (dimensions),
data (and units), variables (and units), and
the model's objective and constraints. Typ-
ically, we follow this subdivision with ver-
bal descriptions of the objective function
and constraints.

We denote elastic persistent variables by
a "•" but otherwise do not distinguish
them to simplify the model presentation—
the persistent data requirements are de-
ferred to a later section of the formulation
as shown in Figure 7. For instance, each
continuous inventory variable is intro-
duced as (̂â v for c < t, and amplified later
to include an associated target value X̂ l,,-
and penalties per aircraft under (PXî )̂, or
over this target (PX,̂ ,.). For this model,
only the production and inventory vari-
ables are persistent. Their targets might
represent values obtained from a previous
run using slightly different data.

Persistent variables (see Figure 8 for a
pictorial representation) can be directly ac-
commodated by specialized solution meth-
ods (Brown and Olson [1996] and Fourer
[1985, 1988, 1992]). Lacking these tools,
conventional methods can be used with
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Indices:

p - production line,
a = aircraft type,
t = planning year,
c - cohort year (year of manufacture).
Data:
(Note: All costs include an appropriate discount fac-
tor based on t.)

B, = budget available in year t,
FR, = total aircraft required in year (,
FA/ = desired average age of all aircraft in year (,

RC,,,^- = cumulativenumber of aircraft of type (I, cohort
c to be retired by year (,

tt,, = annual survival fraction of aircraft a.
/„ = lag in years between the year when air-craft n is

paid for and the year it joins the fleet,
PC,, = cumulative aircraft to be produced in a pro-

duction campaign on line p,

CP^i = the unit cost of producing aircraft a in year (,
CR,,,,. = the cost of retiring aircraft a, cohort c, in year

t,
CO,a^. = annual operating and maintenance cost for an

aircraft a of age t - c - !„ years,
CFpf, = the fixed cost paid in year f when line p is

started in year f,
/ = relative weight for standard costs versus linear

persistent elastic penalties
Variables:

^ui- = for c < /, inventory of operational aircraft of
type a of cohort year c in year / (X,,,, is the number
of aircraft a produced in year t).

R,nt = number of aircraft a in cohort c that are retired
at the beginning of year t,

Y,., = 1 if production line p is opened at the beginning
of year t, 0 otherwise.

Mode! (U and v indicate persistent features):
minimize

+ (1 - -I) (linear persistent elastic penalties)

subject to

- FR, (1)

B,

PC,Y,,,Y,,,

V( (2)

(3)

V;' (4)

^ 0, > 0

V^ a, c

V/, a. c

Vf, a. c

(5)

(6)

Additional data for persistence follows in Figure 7.

Explanations for the objective function and con-
straints folhiw in Figure 7.

Figure 6: An example of PHOENIX, the model used to modernize the army's helicopter fleet,
with modifications for persistence. Conventional notation is used with persistent features dis-
tinguished by " V " or "U". Elastic persistent variables (witb a " v " over the variable) bave a
target value, and finear penalties for deviations from this in either direction. Ranged persistent
constraints (symbolically, =) may vary in value over a limited range. Elastic persistent (ranged)
constraints (symbolically, ^) signify constraint ranges that can be violated at a linear penalty
per unit violation.

the addition of some auxiliary variables.
For instance, a continuous persistent vari-
able X may be expressed as the sum, X̂ ' +
X^ ~ X-, with X*' the fixed target, X^ a
positive deviation costing PX"X^, and X"
a negative deviation costing PX"X . The
representation is even simpler for binary
variables.

Ranged persistent constraints in Figure
6 are denoted =, signifying that a range

will be provided. For example, each in-
stance of constraint (1) superficially stipu-
lates that fKf aircraft must be procured;
however, the notation " = FR/' alerts us
that a persistent constraint range is
implied, and in the following persistence
section of the formulation, this is ampli-
fied to be a number no less than FR, and
no greater than FR,. Ranged constraints
are supported by virtually all commercial
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Additional data for persistent mode! features

Data for elastic persistent variables:
(Note: All penalties include an appropriate discount
factor based on t.)
X^^, PX^, PX,;,, target and penalties per unit above and

below target for X,,,,-, (X̂ ',,. is production target when
c = t and is an inventory target when c < (,)

Data for ranged persistent constraints:

FR,. FR, allowed range for FR,.
Data for elastic persistent constraints:

FA I, FA,, PFA,\ PFA;~ range and penalties per unit
above and below range for FA,,

B,, B,, PB,*, PB," range and penalties per unit above
and below range for B,,

PCp, PCp, PPC^, PPCp range and penalties per unit
above and below range for PC^,,

RC,^^. RC,a,., PRC,+., PRC;~^, range and penalties per unit

Explanation of objective function and constraints

Objective: Minimize a weighted sum of operating and
retirement costs plus linear persistent elastic penal-
ties.

Eqn. (1): Total aircraft inventory must fall within a
given range in each year,

Eqn. (2): Average fleet age should fall within a desired
range in each year.

Eqn, (3): Expenditures in each year should fall within
acceptable budget ranges,

Eqn. (4); Cumulative production on each opened line
should fall within efficient ranges.

Eqn, (5): Production and attrited inventory must
balance between years.
Eqn, (6): Cumulative retirements should fall within
desired ranges each year.

above and below range for RC,,^^..

Figure 7: Additional data underlying the persistent PHOENIX reformulation, and an explana-
tion of the objective function and constraints.

Optimizers and can be also be formulated
as a standard equality constraint with a
bounded slack variable.

The elastic persistent (ranged) con-
straints (^) indicate that a range and pen-

alties for violating the range will be pro-
vided (Figure 8 pictorially represents this).
Specialized linear programming algo-
rithms handle elastic constraints directly
[Brown and Olson 1996], but any such

Pen , s:

slope

X
V

elastic persistent variable: X

implementation: X = X -X +X

B

elastic persistent constraint: V =

implementation:B_-S~ <V <.^

persistent penalty: PXX

implementation: = PX

elastic penalty: Pen

implementation: Pen ~ D~S +
Figure 8: In this pictorial representation of elastic persistent variables (left), and elastic persis-
tent constraints (right), the variable V could represent a single variable but likely represents a
more complex constraint value, such as 2 ( •=( R,P, ' " equation (6) of Figure 6.
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constraint can be represented for standard
solvers as an equality constraint u'ith pe-
nalized artificial variables and a bounded
slack variable.
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